Comparison of Drowning People Detection Systems for Water

Safety

Yunsu Han
1 Introduction

There are many people who go on vacation every summer. The number of vacationers
is usually the maximum from July to August, and the number of people who visit the beach
and play in the water is increasing every year. Unfortunately, the number of water accidents
during the summer vacation season in Korea is gradually increasing. In particular, safety
accidents occur in July and August when vacationers flock to Haeundae Beach. According to
the Ministry of Public Administration and Security, 165 casualties have occurred in the water

over the past five years, especially in the July-August period (Cho, 2020).

Number of Water Accidents in Recent Five Years in South Korea

Number
of paople
60

50 18

\e5
20 17/
10 a

10

Early June Mid June Late June Early July Early July Early July Early August Mid August Late August

Figure 1. A graph of the number of water accidents in recent five years in Haeundae Beach, South

Korea (Cho, 2020).

The government has made numerous efforts to reduce such accidents, but it seems

difficult to reduce them for various reasons, including a lack of lifeguards. The average

number of people visiting Haeundae Beach during the summer vacation season is 77,875,
compared with only 48 rescuers who are not 100 percent fully trained because some are
part-time workers. In other words, a lifeguard has to endure nearly three months, taking care
of 1,622 people a day. As water accidents continue to occur, it is important to detect and
prevent further damage before it occurs.

There are several methods that detect drowning. For example, Kanchana et al. (2017)
created an automated drowning detection device that uses microcontrollers and pressure
sensors, and the RF device detects if the swimmer with the device on his or her wrist stays
inside the water for too much time. Also, Prakash (2018) employed a computer science
technique called Novel Equations, also known as NEPTUNE, which is an early prediction
model with specific equations that calculate the time that a swimmer is inside the water.
Moreover, Salehi, N. et al. (2016) implements another computer vision model that adapts
active contours, detecting a swimmer real-time and checking whether the swimmer is in
danger.

The methods introduced above are valuable and could be employed in real life
situations, but they also lack accuracy and have alarm delays. Therefore, this paper discusses
several systems that detect drowning with some new methods and compares their advantages
and shortcomings in order to find out the probable method to be employed in real-life

situations.

2 Background

This paper compares two different methods: Classic Contour Detection and Deep
Learning using Convolutional Neural Networks. This section discusses how these methods

work in detail.

2.1 Classic Contour Detection

Classic Contour Detection is a well-known skill in computer vision. The program
finds and draws the contours, which are curves that join continuous points with the same
color or intensity. These contours are used for detecting an object or analyzing the shape of
an object. In order to find the contours more accurately, the image must be pre-processed,
such as by applying a threshold and canny edge detection.

OpenCV’s findContours() function finds the contours of an object on a

black-and-white image in which the object is white and the background is black. The function

requires three parameters, which are the source image, contour retrieval mode and contour
approximation method. Contour retrieval mode is the way of finding the contour and
constructing the hierarchy. A contour approximation method is the way of approximating the
contours which stores the points that can draw the contours line. The function returns the
contours and the hierarchy, which explains the parent-child relationship between several
contour lines.

After finding the contours, the system must draw the contours to visually represent the
result. The function cv2.drawContours() takes the image, contour, contour index, color of the

contours, and the thickness of the contours and draws the contour on the image.

Qutput

Figure 2. Contours drawn on an image of coins. (Rosebrock, 2015)

2.2 Deep Learning

Deep Learning is one of the machine learning technologies that has greatly improved
the original artificial neural network of the 1950s and has made significant contributions to
image and video detection since the 2010s. Artificial neural networks go through a process of
interpreting images similar to that of humans. A perceptron, which acts as a neuron within the
human nervous system, has a single layer and creates a structure in which those layers are
connected to each other. This is called a multi-perceptron. A multi-perceptron is a type of
neural network consisting of a multi-layered structure with an input layer, an output layer,
and hidden layers in between. Figure 4 shows the structure of layers that consist of
multi-perceptrons. In addition, this neural network is also called the Deep Neural Network,
also known as DNN, in the sense that it is deeper than the original neural network since there

exists a hidden layer between the input and output layers.

X0

SHA

Input Hidden Output
Layer Layer Layer

Figure 4. Deep Neural Network with an Input Layer, Output Layer, and Hidden Layer.

In these neural networks, nodes represent the input and output values of each layer
and are linked to each other with weight values. When input data are applied to the input
node, the node becomes active and receives a specific weight. The node applies the specific
weight value to the input value and sends the output result to the next node. In the next node,
multiple inputs determine whether to activate, which then affects the next node. Continuing
through this process to the last node at the end determines whether the final output node is
activated. Overall, the weight value between nodes determines the nature of the neural
network.

According to Aggarwal’s “Data Classification: algorithms and applications,” in the
1980s and 1990s, deep learning was not popular due to the limitations in hardware
performance. However, entering the modern age, hardware performance has significantly
improved, and so people have started to employ deep learning technology in several
disciplines. Additionally, since DNN performs better as the number of data increases, and it is
easier to access and collect data, it has become better to use those neural networks in modern
days.

Thus, if one has enough data, one can build a system with better accuracy and
efficiency compared to conventional machine running techniques. Also, if a programmer has

a well-filtered data set, he or she can train the system quickly regardless of the type of data.

In this paper, I attempt to collect a large amount of data and train the system to realize the
pattern and characteristics of people who are in danger and those who are not using

Convolutional Neural Networks (CNN).

2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are often used for image processing. For
example, suppose there is a picture with a number 8, and the system wants to print out that
picture that has the number 8. To do so, one may create a system with DNN. The system can
numerically represent the level of the darkness for each pixel of an 18x18 black-and-white
picture. However, after training the system with such data, a small change in the position of
the numbers creates a problem: if the number 8 is at the top left, not in the middle, the system
does not recognize the number anymore. To feed those image data is also a method to train
the system, but the amount of data is so immense that it takes too much time to train the

system. CNN can resolve this problem.

X13 >,
W13
X12
X11) /Xz\ W12
N B/
X2 X23 W23
X21 \Y’*) W21 W22
sts- W23
X32
o /\ W32
/ Xh- W W31
2
S I
@ @ filter

Figure 3. Convolutional Neural Network applied with a 3x3 filter.

While DNN only converts each pixel’s brightness into numerical values to grasp the
features of the image data, a convolutional layer also keeps track of the relationships of the
numerical values of the image data. The network has a small filter, multiplies the weight

value on the overlapped portion of the data, and applies activation functions. In the case of

the above image, a 3x3 filter multiplies the weighted value to each node and adds them up.
Later on, the system calculates the weighted value with an applied activation function and
hands the result to the next filter. The filter slightly moves until it covers the whole area of
the data. This process is called Convolutional Neural Network, also known as CNN. We also
call CNN that has more than one hidden layer a Deep Convolutional Neural Network
(DCNN).

A CNN trains by feeding some data and the correct output that the programmer wants
the network to show as a result after processing the data. After showing the result, the
program compares the output and the correct answer and then uses gradient descent to update
the weights and filter values to make the result closer to the desired answer. As a result, the
program performs better when it is fed more data since the program is able to train more
times with new data. In the end, the system needs to be generalized so that it could be
employed in images that it has never seen before.

A CNN becomes practical in analyzing data with two-dimensional features, such as
image data. The most popular neural network among image classification systems is CNN,

and this paper also employs that network to distinguish if a person in the water is in danger.

3 Related Works

3.1 HSV Color Space Threshold

HSV color space analysis from “An Automatic Video-based Drowning Detection
System for Swimming Pools Using Active Contours” (Salehi, Keyvanara & Monadjemmi,
2016) explains why HSV color space is the best for detecting drowning among numerous
color spaces. The information of several layers in the HSV color space (V channel containing
the luminance information of the input image and H and S channel containing the
chromaticity information) allows the system to easily track the segmentation of the person in
the water. The transformation from RGB color space to HSV color space helps this paper’s

classic contour detection to easily find the swimmer and draw contours on him or her.

3.3 Image Classification Based on CNN

Jung, H. et al. (2018) proposes a system that captures the condition of crops to

enhance the productivity of smart greenhouses. The research employs CNN to find the reason

why powder fungus is formed on tomatoes and uses the image-fusion technique to classify
images into different groups. As a result, the algorithm that distinguishes the fungus on
tomatoes shows an accuracy of 93.02% for 43 test videos. This paper also employs CNN,
which has a similar process with this research by introducing image extraction, conversion,
and overlapping. Also, the paper is similar to this system in the way that it also determines if

their subjects are in danger or not.

4 Data and Comparison of Methods

This section introduces how the data are collected and a couple of methods -- image
classification based on CNN and classic contour detection -- that detect drowning in the
water, explains the detailed structure and process of data and compares their strengths and

weaknesses.

4.1 Data

In order to feed some images into the CNN system, this paper needs a number of
images of both people drowning and swimming in the water, which are used as training and
testing datasets for the system. Therefore, I took pictures at beaches to collect images that
show people naturally swimming and drowning. However, it was difficult to take pictures
carelessly, and so I took pictures and collected a variety of images by searching on the
Internet as well. I went to websites that contained downloadable images such as Google
Images, Adobe Stock, Getty Images, and Deposit Images, and selected and downloaded
images and videos that are realistic, not having watermarks on them. Video files are
converted to png files once every 30 frames, using a video filter of a program called VLC.

The following table shows the amount of image data:

Train Test
Swimming 1154 332
Drowning 908 316

Table 1. Number of Data Sets of Images

In this paper, I cropped the images into 32x32. It is true that the bigger the image data
are, the easier it is to capture features of people in danger and those not in danger. But,
considering that the images are 3-channel, which means they are colored, training the model
using images with high resolution and quality requires a lot of time and hardware with
extensive specifications. Therefore, I resized the image into 32x32, which is the size equal to
CIFAR-10, a data set that CNN beginners study with. Since CIFAR-10 proves that even small
images can distinguish objects, a small dimension can also classify people drowning and

swimming.

Figure 4. Two examples of images of people drowning and swimming (Madhavan & Hamburg, 2013).

To compare the two contour models to the CNN system, the contour models do not
need a large dataset of still images, but rather video frames. Therefore, I used two videos of a
person swimming and staying inside the water for a long time provided by Maryam
Keyvanara, who has written “An Automatic Video-based Drowning Detection System for
Swimming Pools Using Active Contours.” The two MPG videos are about a minute and a
half long, and the frame rates are both 25 frames per second. The following figure shows two

specific frames from one of the videos.

Figure 5. Twwo screenshot images of one of the videos used for contour detection (Keyvanara et al.,

2016). The left frame is when a swimmer is not in danger, and the right frame is when a swimmer is

possibly in danger.

4.2 CNN Image Classification

CNN has the advantage that the model's accuracy does not drop even though the
system increases the number of hidden layers. Additionally, since CNN extracts features by
putting an entire image as input data, whereas traditional DNN does so from an image by
pixel by pixel and passes the vector of feature values to the network, CNN is the best deep
learning algorithm for this experiment.

CNN used in this paper consists of Convolutional Pooling Layers, which extract the
characteristics of the image data, and Fully Connected Layers, which classify the data using
the information received from the Convolutional Pooling Layers. In this paper, I apply
Convolutional Pooling Layers, which consist of two separate layers, a Convolutional Layer
and a Pooling Layer, to the initial 32x32x3 data with two 3x3 filters based on Max Pooling.
Then, the Fully Connected Layers classify the image data into different classes by utilizing
the data passed from the prior layers. Figure 6 is an overall diagram of the CNN model

employed in this paper.

convi conv2 conv3 conv4

3 channel 32 32 . X 64 N 6

Max

Fully connected :
pooling

Fully connected

Swimming
Drowning |
Sigmoid Drop
Out
1 256

Figure 6. Overall diagram of the CNN Image Classification system.

The experiment uses the Python language, CPU of Intel 17-7700, and GPU of Geforce
GTX 1060 6GB for the environment. It also uses Tensorflow version 2.0's Keras to construct
and train the model and Keras's ImageDataGenerator class to increase data sets needed to
train the model.

Keras’s ImageDataGenerator class performs data augmentation, which helps the
program to increase the generalizability of the model by creating new training samples from
the original images. The class translates, rotates, changes in scale, shears, and flips the
original images and allows the program to find data points that are not included in the
original training set.

In addition, I use the EarlyStopping function and look at the test dataset's loss value to
prevent overfitting, which is a modeling error that the model learns too much about the
training datasets that it fails to generalize to other data, while training the model. If the loss
value does not decrease, the function automatically terminates the training process.

In the compiling process, the system uses adam as its optimizer, and runs over 500

epochs.

4.3 Normal Contour Detection

Normal Contour Detection is also a way to detect a person in the water and check
whether the swimmer is drowning. Finding contours is a built-in operation in OpenCV. My
program first transforms the color space from RGB to HSV. In order to increase the accuracy
of finding the correct object, the system thresholds the image: the system finds the dominant
color of the frame by using k-means clustering to create a palette with the two most
representative colors in the frame and inRange by adding a default range to the dominant
color, and the system morphs the thresholded frame with morphologyEx().

The program then uses a function called findContours() with parameters of a way that
finds the contours as cv2.RETR LIST, which finds all the contour lines but does not form a
hierarchy structure, and an approximation method when finding the contours as
cv2.CHAIN APPROX NONE, which saves all the contours point. The program then draws
several contours, which are a convex hull and an enclosing rotated rectangle. A convex hull is
a set of points that forms the smallest convex polygon, and an enclosing rotated rectangle is a

rectangle that bounds the minimum area around the convex hull.

Figure 7. A convex hull in cyan and enclosing rotated rectangle in yellow (Keyvanara et al., 2016).

The program only draws the contours if the area found was greater than 4,000 pixels

and the area is smaller than half of the entire frame. If the area is too small or too big, the

program might detect something that is not a swimmer as a swimmer. The following diagram,

Figure 7, is an overall flow chart of the system.

Input Video
HSV Color Space
Transformation
Pre-process
Data
Threshold & Morph
Find Contours
Tracking
Phase

|

Output Signal

Figure 8. The flow chart of the normal contour detection system.

After the program detects the swimmer and draws contours around him or her, it
records the number of frames that the swimmer is inside the water. If the swimmer is inside
the water for too much time, which is depended by a threshold value, the system sends a

signal that the person might be in danger.

5 Results and Evaluation

This section displays the results of the method explained in the previous section and

discusses the advantages and disadvantages of the methods.

5.1 CNN Image Classification

This section displays the results of the experiment on the deep learning model based

on a confusion matrix and its four indicators of the results, which are accuracy, recall,

precision, and F1 score. Table 2 displays the confusion matrix of the test data's results. Also,

Table 3 displays the confusion matrix of both the training data set and the testing data set.

Predict Swimming Predict Drowning
Swimming 302 30
Drowning 18 298

Table 2. Confusion Matrix of Image Classification System

Accuracy (%) Recall (%) Precision (%) F1 Score (%)

Train Dataset 96.03 92.36 99.21 95.48

Test Dataset 92.56 94.30 90.96 92.70

Table 3. Accuracy, Recall, Precision, and F'1 Score of Table 2.

Table 3 proves that the system successfully classifies drowning people in their class
with an accuracy of 92.6% for the testing data set. Also, it is true that the recall is greater than
the precision. This means that there is a high possibility that the model classifies people not
in danger as people in danger, but also means that the model successfully detects drowning
people.

However, because the testing data set is not big enough, and the difference between
FP and TN is not that significant, this might not conclude that the model classifies drowning

people well enough.

5.2 Normal Contour Detection

The system sends an alarm signal that the person might be in danger when a person is
continuously not detected for 250 frames in a video of 25 frames per second. There are three
sequences when a person is inside the water for more than 250 frames, and two of the frames
successfully send an alarm signal. However, there are some situations where the system
makes an error, which is detecting a swimmer when he or she is underwater. The following
figure shows two frames of when a person is underwater; the image on the left shows a

successfully undetected swimmer, but the image on the right shows an error of the system.

Figure 9. Two frames of the classic contour detection system (Keyvanara et al., 2016). Left frame

successfully does not detect the person underwater, but the right frame detects the swimmer although

he is underwater.

6 Discussion

Based on the deep learning-based CNN and the contour detection model, I present the
classification of drowning people to prevent water accidents during the summer. I hope to
expand the classification system to a more advanced one that recognizes people who are in
danger in real-time by integrating the system with drones or loT equipment in the future.

In addition, it would be better to have more image and video data for all methods so
that the system has greater accuracy and there are more opportunities to check if the system

works in other environments, as well.

References

Cho, J. H. (2020). Frequent Drown Accidents in Haeundae at night and early in the
morning... Time and blind spot risk without rescuers.
https://www.yna.co.kr/view/AKR20160809082900051.

KANCHANA, A, R, K. G, C, K., V, S., & HEGDE, S. (2017). AUTOMATED
DROWNING DETECTION AND SECURITY IN SWIMMING POOL.

International Research Journal of Engineering and Technology (IRJET), 4(6),
2938-2940.

Prakash, B. D. (2018). Near-Drowning Early Prediction Technique Using Novel Equations
(Neptune) For Swimming Pools. Computer Science & Information Technology (CS
& IT). doi:10.5121/csit.2018.81812

Salehi, N., Keyvanara, M., & Monadjemmi, S. A. (2016). An Automatic Video-based
Drowning Detection System for Swimming Pools Using Active Contours.

International Journal of Image, Graphics and Signal Processing, 8(8), 1-8.
doi:10.5815/ijigsp.2016.08.01

Rosebrock, A. (2015). Figure 7. https://www.pyimagesearch.com/2015/11/02/watershed-
opencv/.

Aggarwal, C. C. (2015). 8.1 Introduction. In Data classification: algorithms and applications
(pp- 206-207). essay, CRC.

Jung, H., Moon, A., An, S.-Y., & Song, Y. E. (2018). CNN-based Tomato Powdery
Mildew Recognition Method. Journal of Institute of Control, Robotics and Systems,
24(7), 617-623. https://doi.org/10.5302/j.icros.2018.18.0055

Keyvanara, M. (2016) Input Video [Video Data File] Location: Keyvanara, M.

